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Solitons in quadratic nonlinear photonic crystals
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~Received 12 January 2001; published 21 September 2001!

We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the
linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities,
which can bedefocusing, and we numerically find previously unknown soliton families. Because of these
induced cubic terms, solitons still exist even when theeffective quadratic nonlinearity vanishesand conven-
tional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these
solitons can propagate stably.
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The physics and applications of photonic band-gap~PBG!
materials, orphotonic crystals, have been active topics o
research for more than a decade. The theory of linear ph
nic crystals is now well understood, and many of their fu
damental properties and technical applications have b
characterized@1#. The next important step in the applicatio
of photonic crystals is to create tunable PBGs. Tunability
possible in linear photonic crystals through, e.g., the te
perature dependence of the refractive index@2# or the
electro-optic effect@3#. Ultrafast dynamical tunability of the
PBG can be accomplished using nonlinearity, as was
demonstrated with a constant Kerr nonlinearity@4#.

Here we considerquadratic nonlinear photonic crystal
~QNPCs! that have a linear grating~periodic dielectric con-
stant! and/or a nonlinear grating~periodic second-order o
x (2) susceptibility!. QNPCs are of interest for all-optica
components due to the fast and strong nonlinearity they
provide through the parametric cascading effect@5#. The ef-
ficiency of the cascading process depends critically on
phase mismatch between the fundamental and sec
harmonic~SH! waves, but two powerful methods exist th
use exactly a periodic photonic crystal structure to con
the mismatch@6–9#. In one method, a QNPC with a linea
Bragg grating is used to bend the dispersion curve near
PBG @7,10#. However, the short period, which is of the ord
of the optical wavelength, can be inconvenient. The sec
scheme, quasi-phase-matching~QPM!, controls the phase
mismatch using a nonlinear grating with a period equal to
comparatively long beat length~typically of the order of mi-
crons! @6,9#. QPM is also possible with linear gratings, b
this is much less effective@7,8#.

One of the spectacular manifestations of nonlinearity
the soliton, a self-localized entity that can propagate
changed over long distances. Homogeneousx (2) materials
support solitons in all dimensions@11#, and gap solitons exis
in QNPCs with a linear Bragg grating@12#. In this paper we
focus on the open fundamental problem of whether solit
exist in one-dimensional~1D! QNPCs withboth a linear and
a nonlinear QPM grating. Such a simultaneous linear gratin
is difficult to avoid when, for example, creating nonline
QPM gratings in GaAs/AlAs semiconductors throu
quantum-well disordering@13#.

Solitons exist in 1D QNPCs with only a nonlinear QP
grating@14#, but a simultaneous linear grating can reduce
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effective x (2) nonlinearity@7–9#. Thus the global existence
of solitons in such QNPCs is nontrivial. We find soliton s
lutions that are stable under propagation because of c
nonlinearities induced by the dual QPM gratings. The QN
even supports stable bright and dark solitons when ther
no effectivex (2) nonlinearity. This is analogous to the exi
tence of solitons in dispersion-managed fibers with no av
age dispersion@15#.

We consider the interaction of a cw beam~carrier fre-
quencyv) with its SH, propagating in a lossless 1D QNP
under conditions for type I second-harmonic generat
~SHG!. We assume that the modulation of the refractive
dex is weak@Dnj (z)/n̄ j!1, wherenj (z)5n̄ j1Dnj (z) and j
refers to the frequencyj v#, such that reflective~and radia-
tive! losses can be neglected. Additionally, we consider o
gratings for forward-wave QPM, in which case the grati
period is much longer than the optical period, far from t
Bragg-reflection regime. The evolution of the slowly varyin
beam envelopes is then described by@6,16#

i
]w

]z
1

1

2

]2w

]x2
1a1~z!w1x~z!w* veibz50,

i
]v
]z

1
1

4

]2v

]x2
12a2~z!v1x~z!w2e2 ibz50, ~1!

wherew5w(x,z) andv5v(x,z) are the envelope function
of the fundamental and SH, respectively. The transverse
propagation coordinatesx and z are in units of the input
beam widthx0 and the diffraction lengthLd5k1x0

2, respec-
tively. The parameterb5DkLd is proportional to the mis-
match Dk5k222k1 , kj5 j vn̄ j /c being the average wav
number. Thusb is positive for normal dispersion and neg
tive for anomalous dispersion. The normalized refractive
dex grating is given bya j (z)5LdvDnj (z)/c and the nor-
malized nonlinear grating byx(z)5Ldvdeff(z)/(n̄1c),
where deff5x (2)/2 is in SI units. The model~1! describes
both temporal and spatial solitons@16#.

The aim is now to average Eqs.~1! and derive accurate
equations for the average field. To do so we focus on fi
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 64 047601
order QPM using the conventional square gratings with 5
duty cycle, shown in Fig. 1. We expand the grating functio
in a Fourier series,

a j~z!5aj(
n

gneinkz, x~z!5d01d(
n

gneinkz, ~2!

wheregn52s/( ipn) for n odd andgn50 for n even, with
s5sgn(k). The gratings drive the system and thus we m
expand the envelope functions in a Fourier series also,

w5(
n

wn~z,x!einkz, v5(
n

vn~z,x!ei (nk2b̃)z, ~3!

assuming that the coefficientswn(z,x) and vn(z,x) vary
slowly in z compared to exp(ikz). The residual mismatchb̃
5b2k is ideally zero.

Three physical length scales are in play: the diffract
lengthLd , the coherence lengthLc , and the grating domain
length L0. In normalized unitsLd51, Lc5p/ubu, and L0
5p/uku. We assume a typical QPM grating with a doma
length that is much shorter than the diffraction length,L0
!1. Furthermore, the grating is of good quality, with th
domain length being close to the coherence length,L0

.Lc , so the residual mismatch is small,ub̃u!uku. In this
case uku@1 and we can use perturbation theory with t
small parametere51/uku!1.

Following the approach of Ref.@14#, we insert the Fourier
expansions~2! and ~3! into the dynamical equations and a
sume the harmonicswnÞ0 and vnÞ0 to be of ordere. To
lowest order (e1), this gives the harmonics

wnÞ05@a1gnw01~dgn211d0dn,1!w0* v0#/~nk!,

vnÞ05@2a2gnv01~dgn111d0dn,21!w0
2#/~nk!. ~4!

Using these solutions, we obtain to first ordere the averaged
equations for the dc componentsw0 andv0,

i
]w0

]z
1

1

2

]2w0

]x2
1rw0* v01g~ uv0u22uw0u2!w050,

i
]v0

]z
1

1

4

]2v0

]x2
1b̃v01r* w0

212guw0u2v050. ~5!

FIG. 1. Normalized linear and quadratic nonlinear gratin
a j (z) andx(z), with period 2L052p/uku.
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These equations also describemth order QPM ~where b̃
5b2mk is ideally zero! and any other type of periodic
grating, the parametersr andg being simply given as sum
over the Fourier coefficients of the grating@14#. Incorporat-
ing time or the spatialy coordinate is also straightforward
For the square grating~2!, r andg can be explicitly calcu-
lated as

r5 i
2d

sp
1 i

4d0~a12a2!

spk
, g5

d0
21d2~128/p2!

k
. ~6!

From Eqs.~5! follows the important result thatcubic non-
linearities are induced in QNPCsby nonlinear QPM grat-
ings. This cubic nonlinearity has the form of self-pha
modulation~SPM! and cross-phase modulation, and is a
sult of non-phase-matched coupling between the wave a
main spatial frequencyk and its higher harmonics. It is thu
of a fundamentally different nature than the material K
nonlinearity, which is reflected in the fact that the SPM te
is absent for the SH.

Apart from sign changes arising from differing definition
of Dk andr, the averaged model~5! is similar in form to the
known model for nonlinear QPM gratings with no dc com
ponent (aj5d050), in which bright solitons have propertie
not predicted by the conventional model with only quadra
terms @14#. The induced cubic nonlinearity also affects th
phase modulation of cws, enabling efficient switching@17#,
and its strength can be increased by modulation of the g
ing @18#.

For the more general QNPCs considered here, the indu
cubic nonlinearity depends on both the dc part and the mo
lation part of the nonlinear grating. It gives either a focusi
or a defocusing effect, depending on the relative intensity
the fields and the sign of the phase mismatchb, since
sgn(k)5sgn(b). The defocusing case was not considered
previous studies@14#. The strength of the effectivex (2) non-
linearity depends on the difference in the linear grati
strengths at the fundamental and SH frequencies and on
dc component of the nonlinear grating. We thus recover
well-known effect that the interplay between the linear a
nonlinear gratings can increase or decrease the effectivex (2)

nonlinearity, depending on the physical situation@7,8#.
The averaged model~5! has stationary, localized solito

solutions of the formw0(x,z)5eilzw̃(x)/uru and v0(x,z)
5e2ilzṽ(x)/r, which obey the equations

1

2

]2w̃

]x2
2lw̃1w̃ṽ1g̃~ ṽ22w̃2!w̃50,

1

4

]2ṽ

]x2
1~ b̃22l!ṽ1w̃212g̃w̃2ṽ50, ~7!

whereg̃5g/uru2 depends only onk, a12a2, andd0 /d. The
slowly varying approximation gives valid solutions when t
soliton period is longer than the grating period, i.e., when
soliton parameterl is small,ulu!uku. Equations~7! cover a
much more general situation than in@14#, which only con-

,
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BRIEF REPORTS PHYSICAL REVIEW E 64 047601
sidered a nonlinear grating. A given value of the parameteg̃
representsa range of physical situations with different com
binations of linear and nonlinear gratings. In Fig. 2 we il-
lustrate representative combinations for exact phase ma
ing (b̃50) all of which give the same value ofg̃.

The first, simple case~i! is typical for domain inversion in
ferroelectric materials, such as LiNbO3. It has only a nonlin-
ear grating with no dc component,d050. Case~ii ! has a dc
componentd0 /d53 but no linear grating, corresponding
the nonlinear part of the LiNbO3 /H:LiNbO3 structure re-
ported in@19#. Case~iii ! is the GaAs/Ga0.8Al0.2As structure
reported in@19#, which has a nonlinear grating withd0 /d
55/3 and a linear grating with (a12a2)/b520.07. So that
cases~ii ! and~iii ! give the sameg̃ as in~i!, the grating wave
numberk is a factorf 548.5 andf 526.6 larger, respectively
@by definition f 51 for case~i!#. Physically this correspond
to changing the input beam widthx0, for a constantb̃50.

We have numerically found the bright soliton solutions
Eqs. ~7! using a standard relaxation technique. Figure
shows soliton properties for normal (g̃50.02) and anoma-
lous (g̃520.02) dispersion, together with the zeroth-ord
solution (g̃50). The ratioR5 ṽ2(0)/w̃2(0) of peak intensi-
ties, shown in Fig. 3~a!, confirms that the zeroth-order ap
proximation becomes increasingly inaccurate for largel.
Also, for a giveng̃, R approaches the same limiting value
l increases, regardless of the value ofb̃. In this limit the SH
is stronger than the fundamental forg̃.0 (R.1) and much
weaker for g̃,0 (R.0). The total powerP5*2`

` ( ṽ2

1w̃2)dx is shown in Fig. 3~b!. Forb.0 this reveals that the

FIG. 2. QNPCs with the same value ofg̃. The linear~nonlinear!
grating is shown with a dashed~solid! curve.

FIG. 3. Soliton properties versus the internal parameterl for

g̃50.02 ~solid!, g̃520.02 ~dashed!, and g̃50 ~dotted!, and three

values of the residual mismatchb̃. ~a! Ratio of peak intensitiesR

5 ṽ2(0)/w̃2(0). ~b! Total powerP.
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power threshold for existence decreases forg̃.0 and in-
creases forg̃,0 compared to the zeroth-order value.

We tested the bright soliton solutions of the avera
model ~5! for the three QNPCs of Fig. 2 by mapping the
back to the variablesw and v, and using them as initia
conditions in simulations of the field Eqs.~1!. The evolution
consists of small, regular oscillations superimposed on
slow average beam. Properties of the propagating solit
were calculated by averaging over an integer number of g
ing periods and were then compared with the predictions
the average model. Figure 4 displays the ratio of peak int
sities versusl for exact phase matching,b̃50, and reveals
that, for both anomalous and normal dispersion, the soluti
of the average model are accurate for smalll and largeuku,
as expected. Even whenuku54 the first-order solutions pro
vide a much better fit than the zeroth-order solutions. O
analysis thus shows that bright solitons exist and propag
stably in QNPCs with many types and combinations of line
and nonlinear QPM gratings.

The competition between linear and nonlinear gratin
can drastically alter the relative strength of thex (2) nonlin-
earity. For the LiNbO3 and GaP/AlP structures given in@19#
at phase matching (k5b), the presence of the linear gratin
changes the effectivex (2) nonlinearity by a factor ofF51
12d0(a12a2)/(dk)51.4 and 0.3, respectively. The linea
grating thus adds constructively in the LiNbO3 structure and
destructively in GaP/AlP. In fact, modifying the nonline
grating in the GaP/AlP structure slightly toxa

(2)540 pm/V
~max! and xb

(2)519 pm/V ~min! eliminates the effective
x (2) nonlinearity entirely. This could happen in realist
QNPCs without a violation of the assumptionuku@1.

Conventional average models@7–9# would predict that no
soliton could exist with no nonlinearity,r50. However, in
the model~5! the induced cubic nonlinearity predicts th
solitons should still exist as solutions of nonlinear Sch¨-
dinger equations. In the case when the SH is stro

FIG. 4. Ratio of peak intensitiesR5 ṽ2(0)/w̃2(0) versusl for
k510f ~continuous!, k54 f ~dot-dashed!, andk5210f ~dashed!,
and for the zeroth-order solution~dotted!. The averages of the
propagating solitons are shown for case~i! by crosses,~ii ! by

circles, and~iii ! by pluses.b̃50.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 047601
@v0 /w05A5exp„i (b̃2l/2)z…#, a family of bright solitons,
w05Al/(2g) sech(A2lx)eilz, exists for normal dispersion
(g,l.0), and a family of dark solitons, w0

5Al/(4g)tanh(Aulux)eilz, exists for anomalous dispersio
(g,l,0). With no SH, bright solitons, w0

5A2l/ugusech(A2lx)eilz, exist for anomalous dispersio
(g,0,l.0), whereas dark solitons, w0

5Aulu/g tanh(Aulux)eilz, exist for normal dispersion (g
.0,l,0). We test these solutions also in simulations of
field Eqs.~1!.

Figure 5 shows the evolution of a bright and dark solit
with no SH over a distance of 25 grating periods. Reflect
losses, if included, would cause a decrease in amplitud
approximately 5% because of the relatively large ind

FIG. 5. ~a! Bright and~b! dark solitons propagating in QNPC
with no effectivex (2) nonlinearity. Shown is the scaled intensity

the fundamental foruku5100, b̃50, and~a! g,0, l51 and~b!
g.0, l521. The SH is zero.
ne
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change for this case. The SH displays small, regular osc
tions around the mean value zero, corresponding to the
cillations of the fundamental seen in Fig. 5. The simulatio
thus confirm that bright and dark solitons can indeed pro
gate in a stable manner in QNPCs with no effectivex (2)

nonlinearity.
In summary, we have shown that bright solitons exist a

propagate in a stable manner in 1D QNPCs with many ty
and combinations of linear and nonlinear QPM gratings.
deriving first-order averaged equations, we have shown
such QNPCs have an induced cubic nonlinearity, and
have numerically found previously unknown families
bright solitons. Even with no effective quadratic nonlinea
ity, the QNPCs support both bright and dark solitons due
the induced cubic nonlinearity. We have found analytic
expressions for these solitons and shown that they
propagate in a stable manner. Dark solitons are always
stable in homogeneousx (2) media in settings for type I SHG
due to modulational instability of the background pla
waves @20#. Because we have allowed for defocusing i
duced cubic nonlinearity, our results show a dark soliton t
appears to be stable under propagation, with the stabiliz
mechanism necessarily originating from the photonic crys
structure of the QNPC. Such stabilizing mechanisms are
considerable experimental interest@21#. A study of dark soli-
tons in the general case is in progress@22#.
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